

Longleaf Pine Savanna

- Highly threatened, fire maintained ecosystem unique to the southeastern U.S.
- Dominated by *Pinus* palustris
- >4% of original pine forests remain
- Degradation caused by many factors including:
 - Fire suppression
 - Logging and naval industry

Longleaf Pine Savanna

What is being done to restore

the savanna?

- Controlled burning
- Thinning/mechanical removal of non native plant species

Hypotheses

Hypothesis 1: Harvesting trees to restore savannas will increase native bee diversity

Hypothesis 2: Remnant plots will have greater bee diversity than former agricultural sites

Sites

- **Remnant** = Undisturbed longleaf pine stands
- **Post ag.** = Former agricultural lands, planted with longleaf pines
- **Control** = no restoration treatments
- **Harvest** = trees removed to restore savanna

Sites

Results

Grand total: 1,257 bees

4 families

11 tribes

15 genera

35 species

Andrenidae

1 tribe

1 genus

1 species

2 specimens

Halictidae

3 tribes

6 genera

21 species

1220 specimens

Megachilidae

3 tribes

3 genera

7 species

22 specimens

Apidae

4 tribes

5 genera

6 species

13 specimens

Apidae

Halictidae

Megachilidae

Andrenidae

Restoration Treatment

Community Composition

Results

Grand total: 1,257 bees

4 families

11 tribes

15 genera

35 species

Andrenidae

1 tribe

1 genus

1 species

2 specimens

Halictidae

3 tribes

6 genera

21 species

1220 specimens

Megachilidae

3 tribes

3 genera

7 species

22 specimens

Apidae

4 tribes

5 genera

6 species

13 specimens

Factors of Native Abundance

	Estimate ± SE	z value	p-value
(Intercept)	4.75 ± 1.71	2.73	0.0064 *
% canopy closed	-0.014 ± 0.002	5.53	< 0.0001 *
% sand	-0.007 ± 0.019	0.34	0.73
% vegetation	0.002 ± 0.005	0.31	0.76
Litter depth (cm)	0.005 ± 0.048	0.094	0.92

Takeaway

Harvesting

 Opens canopy for more sunlight

More Resources

More flowering plants

Greater Bee Diversity

 Take advantage of increased resources

Takeaway

Harvesting trees to restore savannas will increase native bee diversity

- Both native bee abundance and richness increased
- Community composition was positively altered

Remnant plots will have greater bee diversity than post agricultural plots

Land use history had no effect on bee diversity

Acknowledgements

We would like to thank:

- The United States Forest Service
- Daniel Brickley

References

Jason Gibbs
Nwf.gov
nrcs.usda.gov
Texastreeid.tamu.edu
Arborday.org
Bugguide.net
Pinterest.net
Nextsuccession.com

Thanks!

